eclipse远程调试Hadoop

Posted by Mrchor on May 15, 2016

“这就是我,一个低调的作者。”

环境需求:  系统:window 10  eclipse版本:Mars  Hadoop版本:2.6.0

资源需求:解压后的Hadoop-2.6.0,原压缩包自行下载:下载地址

丑话前头说:

以下的操作中,eclipse的启动均需要右键“管理员运行”! 在创建MapReduce的Project那块需要配置log4j(级别是debug),否则打印不出一些调试的信息,从而不好找出错的原因。配置这个log4j很简单,大家可以在网上搜索一下,应该可以找得到相关的配置。

1)首先需要利用ant编译自己的Hadoop-eclipse-plugin插件,你也可以自己网上搜索下载,我不喜欢用别人的东西,所以自己编译了一把,你们也可以参考我的另一篇博文,学着自己编译——《利用Apache Ant编译Hadoop2.6.0-eclipse-plugin》

2)把编译好的Hadoop插件放到eclipse目录下的plugins下,然后重启eclipse

3)打开window–>Preferences–>Hadoop Map/Reduce设置里面的Hadoop安装目录

4)打开window–>Show View找到MapReduce Tools下的Map/Reduce Location,确定

5)然后在eclipse的主界面就可以看到Map/Reduce Location的对话框了

6)新建一个Hadoop Location,修改HDFS和yarn的主节点和端口,finish。

7)这时,在eclipse的Project Explorer中会看到HDFS的目录结构——DFS Locations

注意:可能你打开这个目录结构的时候回存在权限问题(Premission),这是因为你在Hadoop的HDFS的配置文件hdfs-site.xml中没有配置权限(默认是true,意思是不能被集群外的节点访问HDFS文件目录),我们需要在这儿配置为false,重启hdfs服务,然后刷新上述dfs目录即可:

<property>
    <name>dfs.permissions.enabled</name>
    <value>false</value>
</property>

8)然后我们创建一个Map/Reduce Project,创建一个wordcount程序,我把Hadoop的README.txt传到/tmp/mrchor/目录下并改名为readme,输出路径为/tmp/mrchor/out。

	package com.mrchor.HadoopDev.hadoopDev;

	import java.io.IOException;

	import org.apache.hadoop.conf.Configuration;
	import org.apache.hadoop.fs.Path;
	import org.apache.hadoop.io.LongWritable;
	import org.apache.hadoop.io.Text;
	import org.apache.hadoop.mapreduce.Job;
	import org.apache.hadoop.mapreduce.Mapper;
	import org.apache.hadoop.mapreduce.Reducer;
	import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
	import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

	public class WordCountApp {

		public static void main(String[] args) throws Exception {
			Configuration conf = new Configuration();
			Job job = Job.getInstance(conf, WordCountApp.class.getSimpleName());
			job.setJarByClass(com.mrchor.HadoopDev.hadoopDev.WordCountApp.class);
			// TODO: specify a mapper
			job.setMapperClass(MyMapper.class);
			// TODO: specify a reducer
			job.setReducerClass(MyReducer.class);

			// TODO: specify output types
			job.setOutputKeyClass(Text.class);
			job.setOutputValueClass(LongWritable.class);

			// TODO: specify input and output DIRECTORIES (not files)
			FileInputFormat.setInputPaths(job, new Path("hdfs://master:8020/tmp/mrchor/readme"));
			FileOutputFormat.setOutputPath(job, new Path("hdfs://master:8020/tmp/mrchor/out"));

			if (!job.waitForCompletion(true))
				return;
		}

		public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
			Text k2 = new Text();
			LongWritable v2 = new LongWritable();
			@Override
			protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)
					throws IOException, InterruptedException {
				String[] split = value.toString().split(" ");
				for (String word : split) {
					k2.set(word);
					v2.set(1);
					context.write(k2, v2);
				}
			}
		}

		public  static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
			long sum = 0;
			@Override
			protected void reduce(Text k2, Iterable<LongWritable> v2s,
					Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
				for (LongWritable one : v2s) {
					sum+=one.get();
				}
				context.write(k2, new LongWritable(sum));
			}
		}

	}

9)右键Run As–>Run on Hadoop:

A)注意:这边可能报错:

java.io.IOException: HADOOP_HOME or hadoop.home.dir are not set.

这是因为你在安装eclipse的这台机子上没有配置Hadoop的环境变量,需要配置一下:

一)右键“我的电脑”或者“此电脑”选择属性:进入到高级系统设置–>高级–>环境变量配置–>系统变量

新建一个HADOOP_HOME,配置解压后的Hadoop-2.6.0的目录

二)重启eclipse(管理员运行)

10)继续运行wordcount程序,Run on Hadoop,可能会报如下错:

Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
	at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
	at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:557)
	at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977)
	at org.apache.hadoop.util.DiskChecker.checkAccessByFileMethods(DiskChecker.java:187)
	at org.apache.hadoop.util.DiskChecker.checkDirAccess(DiskChecker.java:174)
	at org.apache.hadoop.util.DiskChecker.checkDir(DiskChecker.java:108)
	at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.confChanged(LocalDirAllocator.java:285)
	at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:344)
	at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:150)
	at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:131)
	at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:115)
	at org.apache.hadoop.mapred.LocalDistributedCacheManager.setup(LocalDistributedCacheManager.java:131)
	at org.apache.hadoop.mapred.LocalJobRunner$Job.<init>(LocalJobRunner.java:163)
	at org.apache.hadoop.mapred.LocalJobRunner.submitJob(LocalJobRunner.java:731)
	at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:536)
	at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)
	at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:422)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
	at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)
	at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1314)
	at com.mrchor.HadoopDev.hadoopDev.WordCountApp.main(WordCountApp.java:34)

通过源码查看,发现在NativeIO.java有说明——还是权限问题,可能是需要将当前电脑加入到HDFS授权的用户组:

/**
 * Checks whether the current process has desired access rights on
 * the given path.
 * 
 * Longer term this native function can be substituted with JDK7
 * function Files#isReadable, isWritable, isExecutable.
 *
 * @param path input path
 * @param desiredAccess ACCESS_READ, ACCESS_WRITE or ACCESS_EXECUTE
 * @return true if access is allowed
 * @throws IOException I/O exception on error
 */

但是,我们这边有一个更加巧妙的办法解决这个问题——将源码中的这个文件复制到你的MapReduce的Project中,这个意思是程序在执行的时候回优先找你Project下的class作为程序的引用,而不会去引入的外部jar包中找:

11)继续运行wordcount程序,这次应该程序可以执行了,结果为:

如果得到上面这个结果,说明程序运行正确,打印出来的是MapReduce程序运行结果。我们再刷新目录,可以看到/tmp/mrchor/out目录下有两个文件——_SUCCESS和part-r-00000:

说明程序运行结果正确,此时,我们的eclipse远程调试Hadoop宣告成功!!!大家鼓掌O(∩_∩)O